
CATEGORY THEORY

TOPIC III: RELATIONS

PAUL L. BAILEY

1. Relations

Definition 1. Let A be a set. A relation on A is a subset R ⊂ A × A. If R be a
relation on A, we write aRb to mean (a, b) ∈ R.

Example 1. The concept of “less than or equal to” can be expressed as a relation.
Let R be the set of all real numbers. Let R = {(x, y) ∈ R×R | x ≤ y}. Then R is a
relation, which in effect describes what it means for x to be less than or equal to y
by listing all instances of this phenomenon. Thus, in this case, xRy means x ≤ y.

It should be noted that we may generalize the notion of relation to subsets of
the cartesian product of any sets. This is appropriate and useful in some cases.
For example, this is precisely the origin of the terminology regarding “relational
databases” in computer science. When we use the word relation, however, we will
restrict our attention to binary relations on a single set; hence the definition above.

Definition 2. Let R ⊂ A×A be a relation on a set A. We define its domain to be

dom(R) = {a | (a, b) ∈ R for some b},

and its range to be

rng(R) = {b | (a, b) ∈ R for some a}.

Example 2. Let R be the set of all real numbers. Let

R =

{
(x, y) ∈ R× R

∣∣∣∣ x2a2 +
y2

b2
= 1

}
.

Then R is a relation on the set R; we know that the graph of R is an ellipse. Note
that dom(R) = [−a, a] and rng(R) = [−b, b].

Example 3. Suppose that A is the set of all inhabitants of some island. Let U be
the subset of A×A given by

(a, b) ∈ U ⇔ a is the uncle of b.

Let N be the subset of A×A given by

(a, b) ∈ N ⇔ a is the niece of b.

Note that aNb does not imply bUa, nor does aUb imply aNb. However, if we had
S ⊂ A×A given by

(a, b) ∈ S ⇔ a is the sibling of b,

then aSb⇔ bSa.
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Normally, relations are denoted by symbols other than letters. Thus we adopt
the convention that the symbol ./ will denote a generic relation. Keep in mind that
if ./ is a relation on a set A, this means ./ is a subset of A×A. However, it is also
useful to regard ./ as a “relational binary operator” which takes two elements of
the set A and returns either TRUE or FALSE.

2. Properties of Relations

Definition 3. Let ./ be a relation on a set A.
The relation is reflexive if a ./ a for all a ∈ A.
The relation is symmetric if a ./ b implies b ./ a.
The relation is transitive if a ./ b and b ./ c implies a ./ c.
The relation is antisymmetric if a ./ b and b ./ a implies a = b.
The relation is definite if a ./ b or b ./ a for all a, b ∈ A.

Example 4. The relation “is the same person as” is reflexive, symmetric, and
transitive; so is the relation “is the same height as”. The relation “is the parent of”
has none of these properties (except antisymmetry; think about why). The relation
“is the ancestor of” is transitive, and if we allow that one is one’s own ancestor, it
is also reflexive and antisymmetric.

Proposition 1. Let ./ be a relation on a set A.
If ./ is reflexive, then dom(./) = A.

Proof. Let a ∈ A. Since ./ is reflexive, a ./ a. This means that (a, a) ∈./, so
a ∈ dom(./). �

Proposition 2. Let ./ be a relation on a set A.
If ./ is definite, then ./ is reflexive.

Proof. Let a ∈ A, and set b = a. Since ./ is definite, either a ./ b or b ./ a. But
b = a, so a ./ a. �

Definition 4. Let ./ be a relation on a set A. Let B ⊂ A. The restriction of ./ to
B is

./�B=./ ∩(B ×B).

For b, c ∈ B, we still write b ./ c to mean (b, c) ∈ R ∩ (B ×B).

Proposition 3. Let ./ be a relation on a set A, and let B ⊂ A. Then the restriction
of ./ to B is a relation on B. Moreover, if ./ is reflexive, symmetric, transitive,
antisymmetric, or definite on A, then it still has this property when restricted to B.

The bulk of what we need to say on this topic describes a certain type of relation
known as an equivalence relation. The notion of equivalence relation may be the
most fundamental abstract concept in mathematics, and mastering it is a prerequi-
site for defining numbers and studying abstract algebra and topology, or anything
dependent on these topics.

However, we will also have need for certain types of order relations, so we discuss
those first.
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3. Order Relations

Definition 5. Let ≤ be a relation on a set A. We say that ≤ is a partial order if
for all a, b, c ∈ A we have

(OR1) a ≤ a (reflexivity);
(OR2) if a ≤ b and b ≤ a, then a = b (antisymmetry);
(OR3) if a ≤ b and b ≤ c, then a ≤ c (transitivity).

A partial order ≤ is called a total order if additionally it satisfies

(O4) either a ≤ b or b ≤ a for all a, b ∈ A (definiteness).

We note that (O1) is included by (O4), so it is unnecessary to address (O1) to
show that a relation is a total order.

Proposition 4. Let X be a set. The containment relation ⊂ is a partial order on
the power set P(X).

Proof. Let A, B, and C be any sets. We have already seen that

(OR1) A ⊂ A;
(OR2) A ⊂ B and B ⊂ A implies A = B;
(OR3) A ⊂ B and B ⊂ C implies A ⊂ C.

Thus if A,B,C ∈ P(X), the above statements remain true, which says that ⊂ is a
partial order on P(X). �

Example 5. The containment relation on the power set is not a total order relation.
For example, if X = {1, 2, 3, 4, 5}, then the subsets {1, 3, 5} and {1, 2, 3} are not
related by inclusion.

Example 6. Familiar examples of totally ordered sets are the natural number N,
the integers Z, the rational numbers Q, and the real numbers R. The complex
numbers C have no total ordering which is compatible with their algebraic struc-
ture. We do, however, have a several partial orderings on C which arise from their
algebraic structure (think about what these could be).

Example 7. Let X = Z × Z, and let ≤ be the standard total order on Z. Define
a relation i on X by

(a, b)i (c, d) ⇔ (a ≤ c) ∧ (b ≤ d).

Show that i is a partial order.

Solution. We wish to show that i is reflexive, antisymmetric, and transitive.
(OR1) Let (a, b) ∈ X. Then since ≤ is a total order, it is reflexive, so a ≤ a

and b ≤ b. Thus (a, b)i (a, b), and R is reflexive.
(OR2) Let (a, b), (c, d) ∈ X such that (a, b)R(c, d) and (c, d) i (a, b). Then

a ≤ c and c ≤ a. Since ≤ is antisymmetric, we have a = c. Similarly, b = d. Thus
(a, b) = (c, d), and R is antisymmetric.

(OR3) Let (a, b), (c, d), (e, f) ∈ X and suppose that (a, b) i (c, d) and (c, d) i
(e, f). Then a ≤ c and c ≤ e. Since ≤ is transitive, we have a ≤ e. Similarly, b ≤ f .
Thus (a, b) ≤ (e, f), and R is transitive. �

Consider the graph the set X = Z× Z, so that we may visualize the set X as a
set of discrete points in the plane R2. If we graph the point (a, b), the set of points
in X greater than (a, b) are those lying to the right and above the position of (a, b).
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Definition 6. When the symbol ≤ is used for a partial order on a set X, the
following symbols are assumed to have the given meanings:

• a < b means a ≤ b and a 6= b;
• a ≥ b means b ≤ a;
• a > b means b < a;
• a � b means ¬(a ≤ b);
• a � b means ¬(a ≥ b);
• a ≮ b means ¬(a < b);
• a ≯ b means ¬(a > b).

Definition 7. Let ≤ be a partial order on a set X, and let m ∈ X.
We say that m is a maximal element of X if m � x for every x ∈ X.
We say that m is a minimal element of X if x � m for every x ∈ X.

Example 8. Let X = P(N)r∅. Then X is partially ordered by containment, and
all the singleton sets are minimal elements of X.

Definition 8. Let ≤ be a partial order on a set X, and let m ∈ X.
We say that m is a maximum element of X if x ≤ m for every x ∈ X.
We say that m is a minimum element of X if m ≤ x for every x ∈ X.
If m is a maximum or a minimum, then we say that m is an extremum.

It is clear that maximum elements and maximal, and that minimum elements
are minimal. It is also clear that extreme elements are unique, which we now prove.

Proposition 5. Let ≤ be a partial order on a set X.
If X has a maximum, it is unique, and is denoted by maxX.
If X has a minimum, it is unique, and is denoted by minX.

Proof. Let m1,m2 ∈ X. Suppose m1 and m2 are maxima for X. Then x ≤ m1

and x ≤ m2 for every x ∈ X. Since m1 and m2 are both in X, this implies that
m2 ≤ m1 and m1 ≤ m2. Thus, by antisymmetry, m1 = m2. The demonstration if
m1 and m2 are minima is analogous. �
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4. Equivalence Relations

Let A be a set and let

D = {(a, b) ∈ A×A | a = b}.
The set D is called the diagonal of A × A; it is formally the relation of equality.
The three key attributes of this relation are that it is reflexive, symmetric, and
transitive. The notion of equivalence relation generalizes this idea.

Definition 9. Let A be a set and let ≡ be a relation on A. We say that ≡ is an
equivalence relation if it is reflexive, symmetric, and transitive:

(EQ1) a ≡ a (reflexivity);
(EQ2) a ≡ b if and only if b ≡ a (symmetry);
(EQ3) if a ≡ b and b ≡ c, then a ≡ c (transitivity).

Example 9. Let A be the set of all animals in the world. Define a relation ∼ by

∼= {(a, b) ∈ A×A | a and b are of the same species }.
It is more traditional to write this as

a ∼ b⇔ a and b are of the same species.

Then ∼ is an equivalence relation on the set A. For certainly if an animal a is a
pig, then it is a pig (reflexivity); if a and b are both pigs, then b and a are both
pigs (symmetry); and if a and b are both pigs, and b and c are both pigs, then a
and c are both pigs (transitivity).

Example 10. Let X = N× N. Define a relation on X by

(a, b) ≡ (c, d)⇔ a+ d = b+ c.

This is an equivalence relation.

Example 11. Let Z• = Z r {0} be the set of nonzero integers. Let X = Z × Z•.
Define a relation on X by

(a, b) ≡ (c, d)⇔ ad = bc.

Show that this is an equivalence relation.

Solution. We wish to show that ≡ is reflexive, symmetric, and transitive.
(EQ1) Let (a, b) ∈ X. Then ab = ba by commutativity of multiplication. This

says that (a, b) ≡ (a, b), so ≡ is reflexive.
(EQ2) Let (a, b), (c, d) ∈ X. Then

(a, b) ≡ (c, d)⇔ ad = bc⇔ cb = da⇔ (c, d) ≡ (a, b),

so ≡ is symmetric.
(EQ3) Let (a, b), (c, d), (e, f) ∈ X. Suppose that (a, b) ≡ (c, d) and (c, d) ≡

(e, f). Then ad = bc and ce = df . Multiply the first equation by e and the second
by b and apply commutativity of multiplication in the integers to obtain ade = bce
and bce = bdf . Then by transitivity of equality, we have ade = bdf . By cancellation,
we have ae = bf . Thus (a, b) ≡ (e, f), and ≡ is transitive. �
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5. Equivalence Classes

Equivalence relations are particularly important, because they group the ele-
ments of a set into blocks such that the members of one of the blocks, although
not exactly equal, are similar in some sense in which one may be interested. More
precisely, equivalence relations induce partitions on sets, and the blocks are called
called equivalence classes.

Definition 10. Let ≡ be an equivalence relation on a set A. We say that two
element a, b ∈ A are equivalent if a ≡ b. Since ≡ is symmetric, this is the case if
and only if b ≡ a. The equivalence class of a, denoted [a]≡, is the set of all elements
of A which are equivalent to a:

[a]≡ = {b ∈ A | a ≡ b}.

If the equivalence relation is understood, is is more convenient to simply write
[a] for the equivalence class, or more commonly, a. We will use whichever of these
notations is most convenient in a given circumstance.

Example 12. Suppose A is the set of all animals in the world, and ≡ is the relation
of being in the same species. Let p be a pig. Then p is the set of all pigs in the
world. One can see that if q is also a pig, then q is also the set of all pigs in the
world, so p = q. Also it is clear that if a is an anteater, then p∩ a = ∅. Note there
is exactly one equivalence class x for each species of animal on earth such that x is
an animal of that species. We now proceed to formalize these assertions.

Proposition 6. Let A be a set and let ≡ be an equivalence relation on A. For
a ∈ A, let [a] denote the equivalence class of a. Then the following conditions are
equivalent:

(i) a ≡ b;
(ii) [a] = [b];
(iii) b ∈ [a].

Proof. To prove a statement of this kind, we need to show that (i) is logically
equivalent to (ii), that (ii) is logically equivalent to (iii), and that (iii) is logically
equivalent to (i). It suffices to show that (i) implies (ii), that (ii) implies (iii),
and that (iii) implies (i).

(i) ⇒ (ii) Suppose that a ≡ b. By symmetry of ≡, we know that b ≡ a. We
wish to show that [a] = [b]. We show containment both ways.

Let c ∈ [a]. Then a ≡ c by definition of [a]. Thus b ≡ c by transitivity of ≡,
because b ≡ a and a ≡ c. Thus c ∈ [b] by definition of [b]. This shows that [a] ⊂ [b].

Simply by reversing the roles of a and b is the above argument, we see that
[b] ⊂ [a]. Therefore [a] = [b].

(ii) ⇒ (iii) Suppose that [a] = [b]. We wish to show that b ∈ [a]. Now by
reflexivity, b ≡ b. Thus b ∈ [b]. Since [a] is the same set as [b], we must have b ∈ [a].

(iii) ⇒ (i) Suppose that b ∈ [a]. We wish to show that a ≡ b. But this follows
by the definition of [a]. �
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6. Partitions induced by Equivalence Relations

Proposition 7. Let A be a set and let ≡ be an equivalence relation on A. Then
the collection of equivalence classes

C = {[a] ∈ P(A) | a ∈ A}
forms a partition of A.

Proof. We wish to show that the equivalence classes are nonempty, pairwise disjoint,
and cover A. It is clear that they are nonempty and cover A, since for any a ∈ A,
we have a ∈ [a].

Let a, b ∈ A so that [a], [b] ∈ C are arbitrary equivalence classes. Suppose that
their intersection is nonempty, say c ∈ [a] ∩ [b]. Then [c] = [a] and [c] = [b];
thus [a] = [b]. This tells us that the only way two equivalence classes can have
a nonempty intersection is if they are the same class. Thus distinct equivalence
classes are disjoint. This was our condition to call the sets in a collection of subsets
pairwise disjoint. �

The collection of equivalence classes referred to above is called the partition
induced by the equivalence relation.

Proposition 8. Let A be a set and let C be a partition of A. Define a relation ∼
on A by

∼= {(a, b) ∈ A×A | a ∈ [b]}.
Then ∼ is an equivalence relation.

Proof. We wish to show that ∼ is reflexive, symmetric, and transitive.
Since C is a partition, every element of a ∈ A is in exactly one member of C.

Let us denote this member by [a]. We first note that for a, b ∈ A, a ∈ [b] if and
only if [a] = [b]. To see this, suppose that a ∈ [b]. Then [b] is the unique member
of the partition C which contains a. Since we are calling this member [a], we have
[a] = [b]. On the other hand, if [a] = [b], we know that a ∈ [a], so a ∈ [b].

We have a ∈ [a], so (a, a) ∈∼. Thus ∼ is reflexive.
Suppose a ∼ b. We wish to show that b ∼ a. Now a ∼ b means that a ∈ [b], so

[a] = [b]. Thus a ∈ [b]; therefore b ∼ a. Reversing the roles of a and b shows that
b ∼ a⇒ a ∼ b. Thus a ∼ b⇔ b ∼ a, and ∼ is symmetric.

Suppose that a ∼ b and b ∼ c. We wish to show that a ∼ c. Rephrased, we
wish to show if a ∈ [b] and b ∈ [c], then a ∈ [c]. But a ∈ [b] implies that [a] = [b],
and b ∈ [c] implies that [b] = [c]; thus [a] = [c], so a ∈ [c], and a ∼ c. Thus ∼ is
transitive. �

The relation defined above is called the equivalence relation induced by the parti-
tion. The above two propositions say that the concepts of partition and equivalence
relation correspond to each other in a natural way. A partition is an equivalence
relation by considering its blocks as equivalence classes, and an equivalence relation
partitions the set into blocks which are equivalence classes.
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7. Partitions induced by Functions

We now show that if f : A → B is a function, then f induces an equivalence
relation on the domain A.

Proposition 9. Let f : A→ B be a function. Define a relation ≡ on A by

a1 ≡ a2 ⇔ f(a1) = f(a2).

Then ≡ is an equivalence relation.

Proof. We wish to show that ≡ is reflexive, symmetric, and transitive.
It is reflexive because f(a) = f(a). It is symmetric because f(a1) = f(a2) ⇔

f(a2) = f(a1). It is transitive because f(a1) = f(a2) and f(a2) = f(a3) implies
that f(a1) = f(a3). �

The relation defined above is called the equivalence relation induced by the func-
tion, and the associated partition, naturally enough, is called the partition induced
by the function. The blocks of this partition are nothing but the preimages of points
in B under the map A. The equivalence relation induced by a function is sometimes
called a kernel equivalence. The equivalence class of a under such an equivalence is
sometimes denoted a instead of [a]. The set of equivalence classes may be denoted
A.

Example 13. Let f : R → R be given by f(x) = sinx. Then f induces an
equivalence relation on R which is given by

x1 ≡ x2 ⇔ x2 − x1 = kπ for some k ∈ Z.
The blocks of the corresponding partition are the equivalence classes of this equiva-
lence relation. Such a block consists of points scattered on the real line at a distance
of π from each other. The set of all such blocks covers the real line.

Example 14. Let A be the set of animals on earth and let S be the set of species.
Define a function f : A → S by sending an animal to the species of which it is a
member. Then the partition of A induced by f is the collection of subsets of A
consisting of blocks such that all the animals in one block are of the same species,
and any two animals of the same species are in the same block.
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8. Functions defined on Partitions

Let A be a set and let A be a partition of A. For a given a ∈ A, let [a] denote
the block in A which contains a. We say that a represents the block [a], or that
a is a choice of representative. Suppose B is another set and we wish to define a
function α : A → B, and we do so by saying where each block [a] ∈ A should be
sent in B. Perhaps we use some formula or algorithm which depends on the choice
of representative a1 ∈ [a]. Then we better be certain that, if a2 is another element
representing [a], then the algorithm gives the same value for a2 as it did for a1.

Example 15. Let X = Rr {0} be the set of nonzero real numbers. Let Y = {x ∈
X | x > 0} be the set of positive real numbers and let Z = X r Y be the set of
negative real numbers. Then X = {Y, Z} is a partition of X.

If we attempt to define a function f : X → Z by [x] 7→ x2, this doesn’t make
sense, since [1] = [2], but f([1]) = 1 and f([2]) = 4.

However, if we attempt to define a function g : X→ Z by [x] 7→ x
|x| , this function

does make sense, since the entire block of positive numbers is sent to 1 and the
entire block of negative number is sent to −1.

Let A be a set and let A be a partition of A. Let g : A → B be a function.
Suppose we define a function f : A → B by specifying f([a]) = g(a) ∈ B. If
g(a1) = g(a2) whenever [a1] = [a2], we say the function is well-defined.

Example 16. Let V be the set of vertebrate animals in the world and let V be the
set of equivalence classes of vertebrates of the same species.

Let T = {fish, amph, rept,bird,mamm} be the set of types of vertebrates. At-
tempt to define f : A→ B by

f([v]) =



fish if v is a fish;

amph if v is an amphibian;

rept if v is a reptile;

bird if v is a bird;

mamm if v is a mammal.

Then f is well-defined, since all the vertebrates of the same species are of the same
type.

However, if we attempt to define g : A→ R by

g([v]) = the mass of v in grams ,

then g is not well-defined, because not every vertebrate of the same species has the
same mass.
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9. Canonical Functions

Let A be a partition of a set A, and for a ∈ A let a denote the block containing
a. Then there is a canonical function

β : A→ A

given by f(a) = a. Each element simply is sent to the block containing it. That is,
each element is sent to its equivalence class in the equivalence relation corresponding
to the partition. The function β is surjective, since every block contains an element
(we made it part of our definition of partition that its members are nonempty).

Theorem 1. Let φ : A→ B be a function. Let A be the set of equivalence classes
of A induced by f . Let β : A→ A be the canonical function given by a 7→ a. Then
there exists a unique injective function

φ : A→ B

such that φ = φ ◦ β. If φ is surjective, then φ is bijective.

A B

A

β

φ

φ

Proof. Define φ by φ(a) = φ(a). We must show that this is well defined and
injective, that φ = φ ◦ β, and that any other function ψ : A → B such that
φ = ψ ◦ β is equal to φ.

Note that φ is defined via a choice of representative for a given block in A. To
show that φ is well-defined, we must show that the definition of φ is independent of
the choice of representative. Thus let a1, a2 ∈ A such that a1 = a2. Thus a1 and a2
are inverse images of the same point in B under the map φ. That is, φ(a1) = φ(a2).
Therefore φ(a1) = φ(a1) = φ(a2) = φ(a2), and φ is well-defined.

To see that φ is injective, let a1, a2 ∈ A such that φ(a1) = φ(a2). Then φ(a1) =
φ(a2). By definition of kernel equivalence, a1 = a2, so φ is injective.

To see that φ = φ ◦ β, note that for a ∈ A, φ(a) = φ(a) = φ(β(a)). Thus this
holds essentially by definition of φ and of β.

Suppose that ψ : A → B is another function such that φ = ψ ◦ β. Then
ψ(a) = φ(a) = φ(a), so φ = ψ since it acts the same way on every element of its
domain. Thus a is the unique function with this property. �

Example 17. Let A be the set of animals on earth and let S be the set of species.
Let φ : A→ S be given by sending an animal to its species. Let A be the partition
of A into subsets of A which contain all of the animals of a given species. Then
A is the partition of A induced by φ. Let β : A → A be the canonical function
which sends an animal to the block which contains it. One can easily see that such
blocks naturally correspond to the set of species. The bijective function φ, whose
existence is guaranteed by the above theorem, sends each block to the species to
which the animals in the block belong.
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10. Exercises

Exercise 1. Let A and B be sets and let ≤ be a total order on B. Let f : A→ B
be a function and define a relation 4 on A by

a1 4 a2 ⇔ f(a1) ≤ f(a2).

(a) Show that if f is injective, 4 is a total order on A.
(b) Give an example where f is not injective and 4 is not a partial order on A.

Exercise 2. Let X be a set and let C ⊂ P(X). Define a relation 4 on C by

A 4 B ⇔ ∃ injective f : A→ B.

Is 4 a partial order on C?

Exercise 3. Let X be a set and let C ⊂ P(X). Define a relation ≡ on C by

A ≡ B ⇔ ∃ bijective f : A→ B.

Show that ≡ is an equivalence relation.

Definition 11. A circle in the cartesian plane is a subset of R2 which is the set
of all points equidistant from a given point, called its center; the common distance
is called the radius of the circle. If C ⊂ R2 is a circle and A ⊂ R2, we say that A
is inside C if for each a ∈ A, the distance from a to the center of C is less than or
equal to the radius of the circle.

Exercise 4. Let C ⊂ P(R2) be the collection of all circles in the cartesian plane.
Define a relation 4 on C by

C1 4 C2 ⇔ C1 is inside C2.

Is 4 a partial order on C?

Exercise 5. Let C ⊂ P(R2) be the collection of all circles in the cartesian plane.
Define a relation 4 on C by

C1 4 C2 ⇔ the center of C1 is inside C2.

Is 4 a partial order on C?

Exercise 6. Let C ⊂ P(R2) be the collection of all circles in the cartesian plane.
Define a relation ≡ on C by

C1 ≡ C2 ⇔ C1 and C2 have the same center .

Is ≡ an equivalence relation?

Exercise 7. Define a function | · | : R2 → R by

|(x, y)| =
√
x2 + y2.

Let C be the partition of R2 induced by this function.
Describe the members of C.

Exercise 8. Let X = {1, 2, 3}. Define a function f : P(X)r {∅} → X by

f(A) = the smallest member of A.

Compute the partition of P(X) induced by the function f .
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Exercise 9. Let X = N× N. Define a relation ≡ on X by

(a, b) ≡ (c, d)⇔ a+ d = b+ c.

(a) Show that this is an equivalence relation.
(b) Describe the equivalence classes.
(c) Let C be the set of equivalence classes. Denote the equivalence class of (a, b)
by [a, b]. Determine which of the following functions f : C→ R are well defined:

• f([a, b]) = a2 + b2;
• f([a, b]) = a2 − 2ab+ b2;
• f([a, b]) = a

b ;
• f([a, b]) = sin(a− b).

Exercise 10. Let a, n ∈ Z. We say that n divides a, and write n | a, if there exists
k ∈ Z such that kn = a.

Define a relation ≡ on Z by

a ≡ b⇔ 6 | (a− b).
(a) Show that ≡ is an equivalence relation.
(b) Describe the equivalence classes.
(c) Count the equivalence classes.
(d) Let C be the set of equivalence classes. Denote the equivalence class of a by
[a]. Determine which of the following functions f : C→ Z are well defined:

• f([a]) = 3a;
• f([a]) = 3r, where r is the remainder when a is divided by 6;
• f([a]) = x, where x is the remainder when 3a is divided by 6;
• f([a]) = x, where x is the remainder when a is divided by 3;
• f([a]) = x, where x is the remainder when a is divided by 5.

Exercise 11. Let X be a set and let C = {C1, . . . , Cm} and D = {D1, . . . , Dn} be
partitions of X. Define

E = {Ci ∩Dj | Ci ∈ C, Dj ∈ D}.
(a) Show that E is a partition of X.
(b) Describe the equivalence relation induced by E in terms of the equivalence
relations induced by C and D.

Exercise 12. Let X and Y be sets. Let ∼ be an equivalence relation on X and let
≈ be an equivalence relation on Y . Let [X] and [Y ] denote the respective sets of
equivalence classes. Show that there is an induced equivalence relation ≡ on X×Y .
Denote the set of equivalence classes by [X × Y ], and for (x, y) ∈ X × Y , denote
its equivalence class by [x, y]. Define a function

φ : [X × Y ]→ [X]× [Y ]

by [x, y] 7→ ([x], [y]). Show that φ is well-defined and bijective.
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